6月10日
テーマ：テイラの定理、極値問題

1. テイラの定理続き

定理：$f \in C^n([a, b]) \iff \exists \theta \in (0, 1)$ such that

$$
f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \cdots + \frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1}$$

$$+ \frac{(1-\theta)^{n-1}f^{(n-1)}(a + \theta(b-a))}{(n-1)!}(b-a)^n.$$

証明は教科書参照のこと。

この定理を使うと

$$
\log(1+x) = \sum_{k=2}^{\infty} \frac{(-1)^{k}}{(k-1)!}x^{k-1}
$$

が分かる。教科書参照。

2. 極値問題

定義：$I \subset \mathbb{R}, f : I \to \mathbb{R}, a \in I$とする。

f が a で極大値をとるとは、ある $\delta > 0$ に対して、

$$f(a) \geq f(x) \ (x \in I \cap (a - \delta, a + \delta))$$

が成立することである。

f が a で極小値をとるとは、ある $\delta > 0$ に対して、

$$f(a) \leq f(x) \ (x \in I \cap (a - \delta, a + \delta))$$

が成立することである。

(これは教科書の定義と異なる。しかし、これが通常の定義である。)

例：$f(x) = x^2(x - 1)$ は \mathbb{R} で定義されている。この関数は $x = 0$ で極大値をとり、

$x = \frac{2}{3}$ で極小値をとる。

例：$f : [\ -1, \infty) \to \mathbb{R}$ を $f(x) = x^2$ と定義する。この関数は $x = -1$ で極大値をとり、

$x = 0$ で極小値をとる。
極大値と極小値の総称を極値という。

2. 定理
定理：\(f : (a, b) \rightarrow \mathbb{R}, c \in (a, b), f\) は \(x = c \) で微分可能であり、\(x = c \) で極値をとる \(\iff f'(c) = 0 \)

証明：極大値とする。ある \(\delta > 0 \) に対して、

\[
f(c) \geq f(x) \quad (\forall x \in (a, b) \cap (c - \delta, c + \delta))
\]

となる。\(\delta \) を小さいものに取る替えを考えると、\((c - \delta, c + \delta) \subset (a, b) \) と仮定してよい。このとき、

\[
f(c) \geq f(x) \quad (\forall x \in (c - \delta, c + \delta))
\]

となる。

\[
\lim_{x \to c^0} \frac{f(x) - f(c)}{x - c} \leq 0,
\]

\[
\lim_{x \to c^0} \frac{f(x) - f(c)}{x - c} \geq 0
\]

となり、\(f'(c) = 0 \) が分かり。